Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

  1. Only the smaller (64 and 128) packet sizes matter. For packets sizes above 128 the throughput performance remains similar.
  2. Scenarios 2 and 7 can be seen as the worst case scenarios with both the PMD-cores running on different NUMA than the NIC. As expected, the performance is consistently low for both scenarios-2 and 7.
  3. Interesting cases are Scenario-3 and Scenario-9.  Here a single pmd-core ends up serving both the NICs. This results in poorer performance than Scenario-2 and 7.
  4. Scenario 1, 6, and 8 can be seen as good cases where each of the NICs are served by single, separate PMD-cores.
  5. When one NIC is served by pmd-core on the same NUMA, whereas the other NIC is served by pmd-core on a different NUMA - Scenarios 4 and 5 - can be seen as average cases with lower performance than 1, 6 and 8 - but not as low as 3, 9, 2, and 7.
  6. There is no difference in performance between continuous and RFC2544-throughput traffic tests.


PVP:

Note: In these scenarios, we ensure there is always at least 1 PMD mapped to a NUMA to which a physical NIC is mapped to. That is, we will not encounter the case of Scenario-2 and 7 of the P2P here. 

  1. Continuous traffic results are more consistent across runs compared to RFC2544-throughput test.
  2. The inconsistency across the runs in RFC2544 cases can be explained by the way the binary-search algorithm works - and, this can be used to argue about the importance of adaptive RFC2544 Binary-search algorithm in virtualized environments. 
  3. Due to cross-numa traffic flow, scenarios 2, 3 and 8, as expected, performs poorer compared to other scenarios.


Generic:

Possible Variations

...